
About Lisp
...or Lambda, the ultimate lecture

Yoni Rabkin

yonirabkin@member.fsf.org

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 1

Abstract

First we shall introduce symbolic, conditional and meta
expressions and their recursive definitions with the
λ-notation. Then we will briefly describe how such
expressions might be represented by a computer. We shall
introduce the Lisp REPL and use it to explore a number of
basic Lisp paradigms such as closures, functional
programming and Lisp macros. Finally we shall look at the
past and present of Lisp as a language.

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 2

What is Lisp?

What is Lisp? What can we say generally about Lisp?

“Lisp is a programmable programming language” (a)

There are many Lisps, standardised and not.

Lisp has very little syntax.

Lisp’s roots are in the mathematical representation of
recursive functions [2].

Doesn’t have to look like: λf · (λx · f(xx))(λx · f(xx))

(a)John Foderaro, CACM, September 1991

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 3

Conditional Expressions

(p1 → e1, · · · , pn → en)

It may be read, “if p1 then e1 otherwise if p2 then e2,· · · ,
otherwise if pn then en” where the p’s are propositional
expressions and the e’s are expressions of any kind.

(1 < 2 → 4, 1 > 2 → 3) = 4

(2 < 1 → 4, T → 3) = 3

(2 < 1 → 3, 4 < 1 → 4) is undefined

|x| = (x < 0 → −x, T → x)

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 4

Recursive Function Definitions

n! = (n = 0 → 1, T → n · (n − 1)!)

sqrt (a, x, ǫ) =

(

|x2 − a| < ǫ → x, T → sqrt

(

a,
1

2

(

x +
a

x

)

, ǫ

))

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 5

Church’s λ-notation

Church’s λ-notation [2] helps distinguish between a function
and a form. The expression y2 + x is a form. A form is
converted to a function once the correspondence between
variables occuring the form and an ordered list of
arguments is determined.

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 6

Church’s λ-notation II

If ε is a form in variables x1, · · · , xn then λ ((x1, · · · , xn) , ε)
will be taken to be the function of n variables whose value is
determined by substituting the arguments for the variables
x1, · · · , xn in that order in ε and evaluating the resulting
expression.

λ
(

(x, y) , y2 + x
)

(3, 4) = 19

The concept of a label is used to define recursive functions.

label (a, ε)

label (fact, λ ((n) , (n = 0 → 1, T → n · (fact (n − 1)))))

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 7

Symbolic Expressions

S-expressions are formed out of:
(

)

.

infinite set of atomic symbols

1. Atomic symbols are S-expressions

2. if e1 and e2 are S-expressions, so is (e1 · e2)

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 8

Symbolic Expressions II

A list of arbitrary length written as

(m1,m2, · · · ,mn)

is represented by the S-expression

(m1 · (m2 · (· · · (mn · NIL) · · ·)))

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 9

Meta Expressions

Since we cannot describe S-expressions using
S-expressions, we use M-expressions to describe primitive
functions.

cons[A;B] = (A · B)

cons[cons[A;B];C] = ((A · B) · C)

if x and y represent any two S-expressions, the following
identities are true:

car[cons[x; y]] = x

cdr[cons[x; y]] = y

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 10

Representation of List Structure: Cells

Lisp lists are typically represented using pointers to pairs of
units (aka cells) of memory. The exact representation varies
throughout architectures.

The first half of the cell is called the contents of the address
register or CAR. The second half of the cell is called the
contents of the decrement register or CDR.[4]

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 11

Representation of List Structure: Cons

The S-expression (A · B) is represented as a cons-cell
whose CAR is the atomic symbol A and whose CDR is the
atomic symbol B.

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 12

Representation of List Structure: Lists

The S-expression (A B C) is represented as a chain of
cells. The CAR of the first cell contains the atomic symbol
A, the CDR contains a pointer to the CAR of the next cell,
which contains the atomic symbol B and so on... Finally,
the list is terminated by the atomic symbol NIL in the CDR
if the last cell.

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 13

To the Metal

λ
(

(x, y) , y2 + x
)

CL-USER> (lambda (x y) (+ (* y y) x))
=> #<FUNCTION (LAMBDA (X Y)) {B1B2ADD}>

CL-USER> (disassemble (lambda (x y)
(+ (* y y) x)))

; disassembly for (LAMBDA (X Y))
; MOV EDX, [EBP-4] ; entry point
; MOV EDI, [EBP-4]
; CALL #x100023F ; GENERIC-*
; JNB L0
; MOV ESP, EBX
; MOV EDI, [EBP-8]
; CALL #x1000158 ; GENERIC-+
...

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 14

A Model for Evaluation

λ
(

(x, y) , y2 + x
)

(1 + 2, 4) = 19

CL-USER> ((lambda (x y)
(+ (* y y) x))

(+ 1 2) 4)
=> 19

λ
(

(a, b) , λ
(

(x, y) , y2 + x
)

(a, b)
)

(3, 4) = 19

CL-USER> (let ((x 3) (y 4))
((lambda (a b)

(+ (* b b) a))
x y))

=> 19

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 15

A Word about Prefix Notation

Lisp’s prefix notation and s-expressions have some trivial
advantages.
CL-USER> (let ((g 7) (c 3))

(< 1 2 c 4 5 6 g 8))
=> T

...and some non-trivial implications such as representing
parse-tree form.
1 + 2 + 3
is compiled to
(+ 1 (+ 2 3))
which in Lisp is shorthand for
(+ 1 2 3)
when you write Lisp, you are writing closer to the compiler

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 16

The REPL and Quotation

The read-eval-print loop or REPL, is the heart of an
interactive Lisp environment. The REPL evaluates
S-expressions and returns the result, which is also an
S-expression.
CL-USER> (list 1 2 3 4)
=> (1 2 3 4)
CL-USER> ’(list 1 2 3 4)
=> (LIST 1 2 3 4)
CL-USER> (cons ’+ (list 1 2))
=> (+ 1 2)
CL-USER> (+ 1 2)
=> 3
CL-USER> 3
=> 3

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 17

A Rose by any other Name

label (fact, λ ((n) , (n = 0 → 1, T → n · (fact (n − 1)))))

CL-USER> (defun fact (n)
((lambda (x)

(cond ((= x 0) 1)
(t (* x (fact (- x 1))))))

n))

CL-USER> (defun fact (x)
(cond ((= x 0) 1)

(t (* x (fact (- x 1))))))

CL-USER> (fact 5)
=> 120

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 18

Closures

A combination of a function and a set of variable bindings(a)

is called a closure[5].
CL-USER> (let ((n 0))

(defun serial ()
(cons (random 1000)

(incf n))))

CL-USER> (serial)
=> (715 . 1)

CL-USER> (serial)
=> (582 . 2)

...
(a)For why this is problematic, see [9]

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 19

Functions as arguments

The function:
(defun sum-cubes (a b)
(if (> a b)

0
(+ (cube a)

(sum-cubes (+ a 1) b))))
...is just a special case of:

b
∑

n=a

f (n) = f (a) + · · · + f (b)

...where:
f (n) = n3

[1]
This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 20

Functions as arguments II

(defun sum (term a next b)
(if (> a b)

0
(+ (funcall term a)

(sum term (funcall next a) next b))))

(defun cube (n)
(* n n n))

(defun sum-cubes (a b)
(sum #’cube a #’1+ b))

CL-USER> (sum-cubes 1 10)
=> 3025

[1]
This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 21

Functions as return values

If Dg (x) is the derivative of g evaluated at x:

Dg (x) =
g (x + dx) − g (x)

dx

...then we can express the idea as:
CL-USER> (let ((dx 0.001))

(defun deriv (g)
(lambda (x)

(/ (- (funcall g (+ x dx))
(funcall g x))

dx))))
[1]

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 22

Functions as return values II

So given:
(defun square (n) (* n n))

(defun cube (n) (* n n n))

(defun identity (n) n)
...we get:
CL-USER> (funcall (deriv #’cube) 5)
=> 75.01221

CL-USER> (funcall (deriv #’square) 5)
=> 10.000229

CL-USER> (funcall (deriv #’identity) 5)
=> 0.99992746

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 23

Lisp Macros

Lisp macros transform one form into another while
controlling the evaluation process using the full expressive
power of the language.

write domain-specific languages

move computation to compile-time

write special-forms which break the normal evaluation
regime

create opaque, ungrokable code and incite nervous
break-down

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 24

Lisp Macros - ruining things

Let us implement two misfeatures at once: infix/prefix
inconsistency and operator overloading
Our macros will have three parts:(a)

a “defmacro” declaration

computation done by the macro at compile time

form to be evaluated at runtime

(a)this is true in the same sense that atoms consist of tiny blue and red spinning

balls; it is a useful pedagogical lie

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 25

Lisp Macros - runtime

(defmacro misfeatures-I (form)
(destructuring-bind (a op b) form
‘(funcall

(cond ((and (numberp ,a)
(numberp ,b)) #’+)

((and (stringp ,a)
(stringp ,b)) #’concat)

(t (error "unknown")))
,a ,b)))

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 26

Lisp Macros - runtime II

CL-USER> (misfeatures-I (1 + 2))
=> 3

CL-USER> (misfeatures-I ("1" + "2"))
=> "12"

CL-USER> (let ((foo 1) (bar 2))
(misfeatures-I (foo + bar)))

=> 3

CL-USER> (let ((foo "1") (bar "2"))
(misfeatures-I (foo + bar)))

=> "12"

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 27

Lisp Macros - compile-time

(defmacro misfeatures-II (form)
(destructuring-bind (a op b) form
(let ((type

(cond ((and (numberp a)
(numberp b)) #’+)

((and (stringp a)
(stringp b)) #’concat)

(t (error "unknown")))))
‘(funcall ,type ,a ,b))))

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 28

Lisp Macros - compile-time II

CL-USER> (misfeatures-II (1 + 2))
=> 3

CL-USER> (misfeatures-II ("1" + "2"))
=> "12"

CL-USER> (let ((foo 1) (bar 2))
(misfeatures-II (foo + bar)))

=> ERROR!

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 29

Lisp History

A short and non-conclusive chronology of Lisp [6]. If this
part seems a bit lengthy, it is because Lisp is very old!

1956 — Early thoughts (at Dartmouth)(a)

1958 — First implementation

1960-1965 — Lisp 1.5 (on an IBM 7094) and Lisps on
the PDP-1 ,PDP-6, PDP-10

All Lisps were still basically identical until 1965. The PDP-6
and PDP-10 were well suited for Lisp with 36-bit words,
18-bit addresses and half-word instructions. [7]

(a)http://www-formal.stanford.edu/jmc/history/lisp/node2.html

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 30

Lisp History II

1960’s until the early 1980’s — MacLisp(a) on the
PDP-10 and Honeywell 6180 (under Multics)

MacLisp would later become Zetalisp on the Lisp-Machine
and Scheme. MacLisp had numeric functions on par with
the FORTRAN of the time. (b) This was a “high-water mark”
to be revisited only recently.
The MacLisp community was very “open source” in spirit.

Same era as MacLisp — Interlisp on PDP-10’s, Vaxen
and specialised XEROX Lisp machines.

(a)Mac == MIT’s Project MAC, started 1963
(b)Fateman, Richard J. in a reply to editorial ACM SIGSAM Bulletin 25, pp. 9-11

March 1973

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 31

Lisp History III

1975 — Scheme, the Actor model of computation (now
called “continuations” in Scheme), lexical scoping and
closures

mid 1970’s — Lisp360 and Lisp370 (later called
Lisp/VM) on the IBM 360 and IBM 370

1974-1978 — MIT Lisp machines: CONS, CADR, LMI
inc. and the Symbolics 3600

1973-1980 — Xerox Lisp machines, the Alto(a) and the
“D-machines”: Dorado, Dolphin and Dandelion

(a)The Alto was used to build the first Smalltalk environment.

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 32

Lisp History IV

Early 1980’s — Franz Lisp(a) for UNIX

1981 — Emacs Lisp inside GNU/Emacs under UNIX

1982 — T under UNIX and VMS

1984 — CLtL I: Common Lisp by Steele, Fahlman,
Moon, Weinreb and Gabriel

1986 — X3J13: Common Lisp ANSI standard

(a)Franz Inc. still exist today

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 33

Lisp Present: Scheme

Created by Gerald Jay Sussman and Guy Steele

Inspired by the Actors model of computation

Minimalistic(a)

Standard, but still being standardised (IEEE, R6RS,
ANSI etc.)

Inexplicably... GNU/Guile

(a)The complete Scheme standard is smaller than the index of CLtL2

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 34

Lisp Present: Common Lisp

Created by the Common Lisp standards group

The canonical language for modern Lisp applications

Bignums, complex numbers, extendable arithmetic (no
infix)

Optional strict typing, assertions and fast, optimising
compilers

Built-in arrays, vectors, hash-tables and other data
structures

Object System (CLOS)

Interactive environment(a)

(a)Here “interactive” is meant in the sense that the working system can be in-

spected and changed during its operation.
This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 35

Lisp Present: Emacs Lisp

Created by Richard M. Stallman

Largely inspired by MacLisp

Indefinite scope

VM-like with the GNU/Emacs core as OS binding

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 36

Notable omissions

Here is a taste of some things we didn’t mention from
various Lisps:

compilers

CLOS, Meta-object protocol

Scheme continuations

exact, rich arithmetic

conditions and restarts

programmable parser/serializers

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 37

Bouquets and Brickbats

Greenspun’s Tenth Rule of Programming: any
sufficiently complicated C or Fortran program
contains an ad hoc informally-specified bug-ridden
slow implementation of half of Common Lisp.

– Philip Greenspun

Lisp is a beautiful language, but all the programs
written in Lisp turn out horribly ugly.

– Larry Wall, OSDC.org.il 2006 (paraphrased)

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 38

Bouquets and Brickbats II

The greatest single programming language ever
designed

– Alan Kay (designer of the Smalltalk language), On Lisp

Plenty of brilliant programmers know lisp just fine
and still choose other languages. Most of them, in
fact.

– Joel Spolsky, Fogcreek software

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 39

Bibliography

References

[1] “Structure and Interpretation of Computer Programs”
By Harold Abelson and Gerald Jay Sussman with Julie
Sussman, Massachusetts Institute of Technology,
1996.

[2] “The Calculi of Lambda-Conversion” By A. Church,
Princeton University Press, Princeton, N.J., 1941.

[3] “Recursive Functions of Symbolic Expressions and
Their Computation by Machine, Part I” By John
McCarthy, Massachusetts Institute of Technology,
Cambridge Mass. April 1960.

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 40

Bibliography II

References

[4] “Lisp 1.5 Programmer’s Manual” By John McCarthy et
al. The Computation Center and Research Laboratory
of Electronics, Massachusetts Institute of Technology.
August 17, 1962.

[5] “On Lisp” By Paul Graham, Prentice Hall, 1993

[6] “The Evolution of Lisp” by Guy L. Steele Jr. and
Richard P. Gabriel.

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 41

Bibliography III

References

[7] “DATA REPRESENTATION IN PDP-10 MACLISP” by
Guy Lewis Steele Jr., AI Memo 420, Massachusetts
Institute of Technology, Artificial Intelligence
Laboratory, September 1977.

[8] “Common LISP: The Language” By Guy L. Steele Jr.,
Digital Equipment Corporation Digital Press, 1984

[9] “The Function of FUNCTION in LISP” By Joel Moses,
AI Project MAC Memo AI-199, June 1970

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 42

	Abstract
	What is Lisp?
	Conditional Expressions
	Recursive Function Definitions
	Church's $lambda $-notation
	Church's $lambda $-notation II
	Symbolic Expressions
	Symbolic Expressions II
	Meta Expressions
	Representation of List Structure: Cells
	Representation of List Structure: Cons
	Representation of List Structure: Lists
	To the Metal
	A Model for Evaluation
	A Word about Prefix Notation
	The REPL and Quotation
	A Rose by any other Name
	Closures
	Functions as arguments
	Functions as arguments II
	Functions as return values
	Functions as return values II
	Lisp Macros
	Lisp Macros - ruining things
	Lisp Macros - runtime
	Lisp Macros - runtime II
	Lisp Macros - compile-time
	Lisp Macros - compile-time II
	Lisp History
	Lisp History II
	Lisp History III
	Lisp History IV
	Lisp Present: Scheme
	Lisp Present: Common Lisp
	Lisp Present: Emacs Lisp
	Notable omissions
	Bouquets and Brickbats
	Bouquets and Brickbats II
	Bibliography
	Bibliography II
	Bibliography III

